- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Salehi, Maryam (3)
-
Ccanccapa-Cartagena, Alexander (2)
-
Beheshtimaal, Arghavan (1)
-
Bell, Kati (1)
-
Bhattacharjee, Linkon (1)
-
Ccanccapa‐Cartagena, Alexander (1)
-
Gopakumar, Anandu Nair (1)
-
Gopakumar, Anandu_Nair (1)
-
Gopakumar, Anandu Nair (1)
-
Jazaei, Farhad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Bhattacharjee, Linkon; Gopakumar, Anandu Nair; Beheshtimaal, Arghavan; Jazaei, Farhad; Ccanccapa-Cartagena, Alexander; Salehi, Maryam (, Journal of Hazardous Materials)Free, publicly-accessible full text available March 1, 2026
-
Gopakumar, Anandu_Nair; Ccanccapa‐Cartagena, Alexander; Bell, Kati; Salehi, Maryam (, Journal of Applied Polymer Science)Abstract This study presents the development of an innovative nanofibrous membrane to remove microplastics (MPs) from drinking water. This membrane exhibits additional functionality in removing lead (Pb), highlighting its promising potential for utilization as a point‐of‐use (POU) device. The polyvinyl alcohol (PVA) nanofibrous membranes are crosslinked using glutaraldehyde, and their efficiencies in the removal of MPs are evaluated. The results show that crosslinking the 7 and 10 wt% PVA nanofibers increases their average diameters to 330 and 581 nm, respectively, and enhances their surface area. The treatment efficiency of crosslinked PVA fibrous media is evaluated using polyethylene (PE) (5 μm ≤d ≤ 25 μm) and polystyrene (PS) MPs (d ≤ 1 μm). The filtration efficiencies of both 7 and 10 wt% c‐PVA nanofibrous media are found to be 99.8% ± 0.1% in the removal of PE MPs at pH 8. Further examination of the filtration efficiency in the removal of PS MPs shows that the highest removal efficiency achieved was 77.3% ± 1.4% at a pH of 6. Additionally, the lead removal efficiency of this fibrous membrane in flow‐through experiments is examined. Results show a pH‐dependent lead removal efficiency, in which the greatest efficiency of 69% is found at pH 6.more » « less
An official website of the United States government
